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The aerospace industry, motivated by the potential for next-generation travel, requires the exploration of 

supersonic vehicle designs and manufacturing. Despite this, the design processes for supersonic fighter jets like 

the F-15, F-22, and F-35 have remained largely unchanged, relying on established frameworks. As Industry 4.0 

progresses across various sectors, including aerospace design, integrating AI into different stages of the design 

process holds the potential to revolutionize how new designs are conceived. With the increasing precision of 

large language models (LLMs) and other AI technologies, there is a significant opportunity to transform 

current methodologies for supersonic aircraft. The incorporation of LLMs and AI can redefine these starting 

points, altering the entire design process. This paper explores the application of LLMs and AI in the 

preliminary design of supersonic aircraft, focusing on their ability to analyze and optimize aerodynamic 

properties. By utilizing AI-driven tools and computational fluid dynamics (CFD) simulations within CAE 

software such as ANSYS Fluent, we aim to evaluate the performance of AI-generated designs compared to 

traditional, experimentally validated supersonic aircraft. 

Nomenclature 

CL = coefficient of lift 

CD = coefficient of drag 

L/D = Lift to Drag Ratio 

Mach = speed of sound 

t/c = thickness to chord ratio 

I. Introduction 

 The focus of the aviation industry in recent years has been shifting towards supersonic aircraft as technology in 

the industry continues to increase the potential for next generation travel. Despite the first supersonic flight happening 

in 1947 and the Concorde, a supersonic passenger plane, having been developed and successfully flown in 1969, the 

area of supersonic aircraft design/analysis has not undergone much change since then. Part of this stagnation is due to 

the FAA placing limits and bans on areas for supersonic flight. Recently NASA and Lockheed Martin have been part 

of the renewal in supersonic innovation with the creation of Boom, designed to limit the noise from sonic booms. 

Boom (https://boomsupersonic.com/xb-1) has its first successful flight in January 2025, demonstrating  the future of 

supersonic flight travel.  

     However, despite the innovation in  new supersonic designs, the design philosophy for fighter jets capable of 

supersonic flight has been the same for years. Comparing the designs of the F-15, F-22, and F-35 shows that the same 

base design has been used with only slight modifications based on mission needs for the plane. This process of using 

the same design tree for every iteration has worked, but it limits innovation. With the increase of industry 4.0 in many 
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fields, the opportunity to change processes and increase innovation by introducing industry 4.0 into the aerospace field 

has potential.   

      Recent studies have demonstrated the potential of generative AI in aerospace design. For instance, a review on 

generative design methods and performance analysis of aircraft highlights how these techniques can optimize aircraft 

structures and improve performance [8]. The study discusses various case studies from aerospace research, showcasing 

the capabilities of generative methods and algorithms in providing multiple potential solutions to structural design 

challenges. Another study focuses on the use of deep learning for the inverse design of low-boom supersonic 

configurations [4]. This research explores how AI can be used to predict and optimize the far-field signals of 

supersonic aircraft, thereby reducing the sonic boom and improving overall performance. Generative AI along with 

LLMs (Large Language Model) can explore a wide range of supersonic design configurations to identify those that 

offer the best aerodynamic performance, leading to more efficient and faster aircraft and can allow for the creation of 

new designs efficiently.  

The aim of this study is to determine if the use of LLMs and generative AI can result in aerodynamically viable 

supersonic aircraft designs. After a brief review of methodologies and ChatGPT prompts, a design model was 

developed and a CFD (Computational Fluid Dynamics) analysis was performed. Several simulation results are 

obtained and presented and compared to the existing analytical solutions. The results further demonstrate that various 

parameters affect the performance and hence needs to be further studied. The use of these new industry 4.0 

technologies in aerospace design could revolutionize the field by allowing multiple designs to quickly be generated 

without relying on previous designs. The findings of this study contribute to an evolving discussion on how AI can 

reshape the aerospace design landscape, offering insights into its potential to enhance efficiency, innovation, and 

performance in the development of future supersonic vehicles.  

II. Methodologies 

  The supersonic aircraft designs were generated using ChatGPT o1 with the goal of determining the ability of 

generative AI to design supersonic aircraft. Two different starting prompts were created to give to ChatGPT to see 

what designs are created. ChatGPT o1 was chosen as the version that was used because o1 is the most advanced 

version of ChatGPT that is available to the public. The first of the prompts was a generic prompt that gave no details 

about mission criteria or design criteria, just that the design was supposed to be a non-commercial supersonic jet. The 

goal of this prompt was to see if the AI can recognize and include details in the aircraft design that are necessary for 

supersonic but not subsonic aircraft. The second prompt that was created gave design criteria and mission criteria for 

the theoretical design for ChatGPT to design around. The design criteria that were given to ChatGPT were based on 

the publicly available data on typical supersonic jets. This is the more realistic approach for real world aircraft design 

because aircraft are made for a specific mission, so if AI is incorporated into aircraft design in the future, the use case 

would be more similar to this prompt. The goal of the aerodynamic analysis is to determine if based on the flight 

characteristics of each design, if the design is viable for flight, but also, to determine if giving the AI more details for 

the design of the plane created a better design from an aerodynamic standpoint.   

ChatGPT and other LLMs are capable of creating simple shape CAD (Computer Aided Design) models. However, 

the shape of a supersonic aircraft does not fit that description and is much too complex for the LLMs to create. This 

meant that the models that were going to be used in simulation needed to be created in another program based on the 

design characteristics that were provided by ChatGPT. The program chosen for the creation of the models is OpenVSP, 

which is a program made for model creation and low fidelity simulations of aircraft. The simulations in the program 

were not enough for the goals of this paper, but the model creation aspect of the program was perfect due to the ease 

of creation for complex geometries that are often seen in supersonic aircraft. The models for the wings, vertical, and 

horizontal stabilizers were made separately for each of the plane designs and then imported and combined in 

Fusion360. The fuselage models were publicly available models that closely matched the description of the fuselage 

(https://airshow.openvsp.org/vsp/uKwiBfqZl5vXNPbrVDN9) and then modified in order to fix the errors or 

inaccuracies based on the given fuselage characteristics.  

The simulations to determine the aerodynamic characteristics of the designs were run in ANSYS Fluent and Fluent 

Aero. The aerodynamic performance of each aircraft was evaluated initially at an altitude of 55,000 ft at a Mach of 2 

with an AoA (Angle of Attack) of 3.5 degrees, which aligns to the standard cruise conditions of the Concorde [5]. 

Along with the simulation at supersonic cruise conditions, a Mach sweep was performed for both aircraft over a range 

of Mach 0.95 to 1.7 in intervals of 0.15 at an AoA of 7 degrees. Based on Concorde flight data, at around 27,000 ft, 

the Concorde was just under the speed of sound. The assumption of a linear climb rate was made from Mach 0.95 to 

standard cruising conditions. This gives rough estimations of the altitude at each Mach value, which will ultimately 

provide an approximation of the L/D at each flight condition. The Mach 2 standard cruise simulations were run in 

https://pubs.aip.org/aip/acp/article/2962/1/020001/3253466/Review-on-generative-design-methods-and
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ANSYS Fluent, while the Mach sweep was run in Fluent Aero. Fluent Aero was used for the Mach sweep simulations 

because the program is tailored for aerospace simulations, like the ones in this paper, as well as it streamlines the 

process of simulating airflow over a range of flight conditions. This ease of setting up simulations, such as a Mach 

sweep, made Fluent Aero the obvious choice over ANSYS Fluent for this set of simulations. In order to simplify the 

simulations, the focus was made to just aerodynamic properties, so propulsion is not included in the simulations. For 

both supersonic plane designs, the simulations were run with the same initial conditions in order to allow for the best 

comparison between the designs. The altitude and speed of the simulations was based on the flight characteristics of 

the Concorde, which was chosen because of performance characteristics that were publicly available for it.   

For the high-fidelity simulations that are required to accurately predict performance characteristics of supersonic 

flight, a fine mesh is a necessity. To minimize the total cell count, and to maximize the accuracy of the solution, a 

mesh about the plane of symmetry was considered. This will allow for decreased local cell sizings around key points 

of the aircraft, which was one aspect of the mesh that was heavily focused on A body of influence was implemented 

surrounding the aircraft for further mesh refinement, as well as to capture the flow characteristics in the wake of the 

aircraft. Additionally, sizing refinements were added to the nose and body of the aircraft, where the flow initially 

contacts both models. Specific detail was given to the cell sizings around the edges of the aircraft where flow may be 

disrupted, such as leading and trailing edges, fuselage and wing connections, and wing tip edges. Finally, due to the 

limited computing power and cell numbers provided by the university, a y+ = 30 was chosen, providing a balance 

between computational time and cost to total cell count. The mesh featured 10 inflation layers and a first layer height 

of 8.1 x 10-04 m, which is dependent on the freestream density, viscosity, velocity, and reference length. This would 

be sufficient enough to capture the intricate flow behavior throughout the entire viscous sublayer. The volume mesh 

incorporated polyhedral cells, with both meshes having over 6 x 106 cells.   

III. Generative Design Details 
A. Generic Prompt 

     The first supersonic aircraft that was created and simulated was from a generic prompt that gave the AI little 

direction. The prompt that was given to ChatGPT was to design a typical supersonic jet and provide design 

characteristics, and no extra details about design criteria were given to the AI. Clarifying questions were asked in 

order to get major details that were not listed as first, such as wing root and tip chord length and wing location, but 

there were still some assumptions that were made, including smaller details on the fuselage. These assumptions were 

focused on details that were needed to make the model but would not have a large impact on aerodynamic performance. 

The design characteristics in table 1 are the results of the generic prompt that was given to ChatGPT o1.  

 

Table 1. Aircraft Design Characteristics from Generic Prompt 

Design Variable Design Value 

Length 105 ft 

Fuselage Diameter (max) 7.55 ft 

Wingspan, Area 50 ft, 753.5 ft2 

Wing Leading Edge Sweep 60o 

Chord Length (root, tip) 39.4, 4 ft 

t/c (root, tip) 3.5 %, 2.5% 

Airfoil NACA 0004 

Vertical Stabilizer Height, Area 13.3 ft, 118.4 ft2 

Vertical Stabilizer Airfoil Double Wedge (4% t/c) 

Horizontal Stabilizer Span, Area 16.5 ft, 129 ft2 

Horizontal Stabilizer Airfoil Double Wedge (4% t/c) 

 

     Along with the base design characteristics that were given, ChatGPT gave other important design characteristics 

that are important for supersonic designs. The response had an entire section going through the internal structures of 

the wings and fuselage as well as a section going over avionics, flight controls, and environmental systems. Even 

though these results were not included in the simulations due to simplifications in the process, the AI recognizing 

and adding these design features shows promise for the ability to use AI in aircraft design. One goal when creating 
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the design was to only have the input of the LLM in the design, so if a detail that would normally be included in a 

supersonic design was not explicitly said, it was not included in the model. One example of this is in the fuselage 

shape. The fuselage for a supersonic aircraft should have a “coke-bottle” shape, but since the response from 

ChatGPT did not include or list that shape in the fuselage details, it was not added to the final model.  

B. Detailed Prompt 

     The second model was created based on a prompt with specific design characteristics based on a typical supersonic 

jet. The conditions that were given to the LLM were takeoff, flight, and mission criteria. The prompt did not give 

exact values, but rather, a value range for each characteristic in order to allow there to still be design decisions for the 

LLM to make. The following prompt was given to ChatGPT to produce the second plane design: 

 

AI Prompt: “Design a supersonic jet that meets the takeoff, flight, and mission criteria listed. For takeoff conditions, 

the takeoff speed is Mach 0.3, and the maximum takeoff weight (MTOW) is between 69,000 and 75,000 pounds. For 

the cruise conditions, the maximum speed of this aircraft is Mach 2.0 with a cruising speed between Mach 0.8-0.85, 

the cruising altitude is roughly 55,000 feet, and the cruise weight is between 54,000 and 60,000 pounds. There are no 

radar considerations for this aircraft, and the length of the aircraft should be between the range of 50-65 feet. One 

focus of the aircraft is the high-performance level at a large range of angles of attack, not just level flight. Lastly, 

provide an airfoil for this aircraft. Please take all of these flight and mission criteria and give exact aircraft design 

characteristics that will perform best for these criteria.” 

 

 Similar to the generic plane design, additional clarifying questions were needed in order to accurately make the 

plane design because important information for making the model was not initially given. Some of the information 

that was needed but not given includes root and tip chords of the wings, wing location on the fuselage, and details 

about the horizontal stabilizer. The design characteristics that were generated by the AI in response are listed in table 

2. 

 

Table 2. Aircraft Design Characteristics from Detailed Prompt 

Design Variable Design Value 

Length 60 ft 

Fuselage Diameter (max) 6 ft 

Wingspan, Area 32 ft, 600 ft2 

Wing Leading Edge Sweep 58o outboard, 55o near root 

Chord Length (root, tip) 30, 7.5 ft 

t/c (root, tip) 4%, 4% 

Airfoil NACA 65A004 

Vertical Stabilizer Height, Area 10 ft, 120 ft2 

Vertical Stabilizer Airfoil NACA 65A004 

Horizontal Stabilizer Span, Area 13 ft, 120 ft2 

Horizontal Stabilizer Airfoil NACA 64A004 

 

With this prompt, the LLM did not include any structural details in the creation of the plane design. 

However, the response did include more details for the aerodynamic designs of the plane, matching the emphasis in 

the prompt that the main goal of the design was aerodynamic focused. The response did include details about the 

propulsion system that would be used, but there was no discussion over the structural designs like there was in 

generic prompt. The airfoils and fuselage shape that was given in the response is more typical for supersonic 

designs, indicating that a more detailed prompt might result in better performance characteristics.   
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Fig. 1 CAD Models of Both Plane Designs 

 

IV. Results 

A. Simulation Results 
Initially, both simulations were run at standard cruising conditions in ANSYS Fluent, which were described 

earlier. For simulation setup, the steady-state RANS equations were used along with the k-𝜔 SST (shear-stress 

transport) model. In addition, due to the rapid density changes experienced at supersonic flight, the density-based 

solver was considered with ideal gas for air. The viscosity of the fluid was characterized by Sutherland’s Law, where 

the reference temperature and Sutherland temperature were 273.15 K and 110.4 K, respectively. For boundary 

conditions, the inlet condition was modelled as a pressure farfield in order to properly input the Mach number, gauge 

pressure, and AoA at 55,000 ft, with the turbulence intensity and turbulent viscosity ratio being set to 10% and 10, 

respectively. The aircraft itself assumed to be a stationary wall with a no-slip boundary condition, while the symmetry 

plane was set as symmetry. For output parameters, the total CL and CD were monitored for the wing and entire aircraft, 

which can be seen in Table 3. Each simulation was run for over 300 iterations, allowing the residuals and outputs to 

fully converge for the most accurate results. 

 

Table 3. Comparison of Coefficients of Lift and Drag at Mach 2 

Variables  GM DM 

CL (Wing) 0.0453 0.0427 

CL (Entire Plane) 0.0505 0.0446 

CD (Wing) 0.0049 0.0057 

CD (Entire Plane) 0.0078 0.0115 

L/D (Wing) 9.2449 7.4912 

L/D (Entire Plane) 6.4744 3.8783 

Looking at the results provided in Table 3, it can be seen that when isolating the values for the wing in both models, 

the values closely align. Meanwhile, for the entire aircraft, the CD significantly increases for the DM when comparing that 

of the GM.  In addition, the value of CL also decreases, ultimately almost halving the L/D for the DM. These values provided 
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a rough idea of how each model would perform in flight, but to further assess its performance in supersonic flight, a Mach 

sweep of each model was performed in Fluent Aero and compared to data provided by the Concorde.  

The CFD simulations in Fluent Aero were set up similarly to that of the simulations in ANSYS Fluent. The GM and 

DM were performed with the k-𝜔 SST model with a density-based solver. The Mach numbers were set to a range between 

0.95 and 1.7 with evenly spaced intervals, and in conjunction the altitude was calculated at each Mach number based on the 

linear increase assumption stated earlier. One aspect of Fluent Aero that makes it user friendly is its ability to automatically 

populate the pressure and temperature at each altitude based on the Ideal-gas equations. The boundary condition parameters 

were set to be equivalent to those set in ANSYS Fluent. Due to an assumed increase in turbulent flow at a higher AoA, the 

simulations were run for 1000 iterations, monitoring CL and CD at each flight condition. 

 

 

Fig. 2 Comparison of L/D Between the Concorde, GM, and DM Over the Range of the Mach Sweep 

The L/D ratio was plotted as a curve at Mach number, which can be seen in Fig. 2. The values associated between each 

simulated Mach number are an approximation set by the simulated L/D’s, which ultimately provide a rough accuracy to how 

the L/D would vary if it were simulated at those Mach numbers. When comparing the three sets of data provided, it can be 

seen that the Concorde outperformed both the GM and DM at low Mach numbers, as well as high Mach numbers. However, 

it should be noted that at Mach 1.25, the GM had a slightly higher L/D ratio than the Concorde before slowly decreasing as 

the Mach number increased. On the other hand, the DM performed worse at all Mach numbers from 0.97 to 1.7 when 

comparing it to the GM and Concorde. This aligns with what was shown in Table 3, that at higher Mach numbers the GM 

has marginally better aerodynamic characteristics than the DM. Although this is just a range of Mach numbers at one specific 

AoA, it does provide some insight to the aerodynamic performance of both aircrafts at supersonic flight conditions. 

Continuing this comparison, Figs. 3 & 4 depict the static pressure distribution over the half-body aircraft for both the GM 

(left) and DM (right) at Mach 0.95 and 1.7, respectively. For both Mach numbers, the scale for static pressure was the same 

for each model, providing a more accurate comparison. At Mach 0.95, for both models it can be seen that since they are in 

the transonic regime, there is a shock wave formation near the leading edge of each wing. This leads to an abrupt increase 

in static pressure directly after the shock wave, as well as more flow separation towards the trailing edge where the pressure 

increases again. When looking at each horizontal stabilizer, the double wedge airfoil provided a sharper decrease in static 

pressure, as opposed to the NACA 64A004 airfoil for the DM. Similar trends can be seen in Fig. 4, however since the aircraft 
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is now at supersonic speeds, there is no shock wave formation over the surface of the wing. Close to the leading edge there 

is a low region of static pressure, but flow separation past this point causes it to increase for both models.  

 

 

Fig 3 Comparison of the Static Pressure Contours of the GM and DM at Mach 0.95 

 

Fig 4 Comparison of the Static Pressure Contours of the GM and DM at Mach 1.7 

These contours highlight the key differences in pressure distribution over the half-body aircraft for transonic speeds 

and near Mach 2, supersonic speeds. It provides detail to how each airfoil for the wing and horizontal stabilizer contribute 

to the CL and CD values, and ultimately the L/D for each Mach number shown in Fig. 2.  
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B. Numerical Results for Validation 
After the simulations were completed, the next goal was to verify the results to ensure that simulation values were 

accurate to what should be expected. The equations that were used for the verification were found in Introduction to 

Aeronautics: A Design Process. In order to verify the simulations, the CL for the wing was determined using standard 

calculations given from [2]. Traditionally, the standard equation for calculating the lift-curve slope is characterized by 

Eq. (1), however that equation only works if the condition described is met. Since the generic prompt supersonic 

aircraft has a larger leading-edge sweep when comparing it to the detailed prompt wing leading edge sweep detailed 

in Table [here], this rendered the criteria mentioned above invalid. As a result, Eqs. (2) - (5) were utilized to calculate 

the lift-curve slope from the 2-D airfoil chart, in order to determine CL for the wing in the generic prompt simulation. 

Additionally, when looking at the detailed prompt’s design variables, it also does not meet the criteria, since the 

freestream Mach number is equal to the fraction on the right side of the inequality shown in Eq. (1).  The equations 

used to calculate CL for the wing in the generic prompt could not be used for the wing in the detailed prompt as no 

requisite 2-D airfoil data was found for the NACA 65A004 airfoil. Even though the CL could only be calculated for 

one simulation, the verification of one of the results is beneficial because both simulations were run with the same 

settings.  

 

𝐶𝐿𝛼
=

4

√𝑀∞
2 −1

 ;  𝐼𝑓 𝑀∞ >
1

cos(Λ𝐿𝐸)
                                                              (1) 

𝑒  =
2

2−𝐴𝑅+√4+𝐴𝑅2(1+tan2(Λ𝑡𝑚𝑎𝑥))
                                                              (2) 

𝐶𝑙𝛼
=

𝑐𝑙

𝛼−𝛼𝐿=0
                                                                              (3) 

𝐶𝐿𝛼
=

𝐶𝑙𝛼

1+
57.3𝐶𝑙𝛼

𝜋𝑒𝐴𝑅

                                                                            (4) 

𝐶𝐿 = 𝐶𝐿𝛼
(𝛼 − 𝛼𝐿=0)                                                                       (5) 

 

 

     The result from the calculations demonstrated a CL of roughly 0.05058 for the wing of the GM. Compared to the 

simulation result in table 1, that yields a 10.5 percent error. The cause of the error is likely due to estimations that 

were made about values from the airfoil. The estimations had to be made because there was not the CL vs AoA graphs 

for the airfoil that the model used. In order to get the value that was used in the calculation, the closest airfoil that had 

data was used to get values. Additionally, the values pulled from the graph could only be accurate to two decimal 

places. The combination of inexact data for an airfoil that was only close to the correct airfoil created the error seen 

between the calculations and the simulations. 

V. Discussion 

     When determining the aerodynamic viability of a plane design, there are many factors that can be used. For this 

paper, the approach that was chosen to analyze the plane design was to look at the lift-to-drag ratio. This was the 

chosen method because other methods, such as analyzing pressure or velocity changes over the wing or plane, have 

an effect on the lift to drag ratio, so lift to drag ratio is a good metric to use for incorporating multiple aspects. In order 

to determine if the designs are aerodynamically viable, each design is being compared to the lift-to-drag ratio of the 

Concorde. The Concorde was chosen as the comparison vehicle because it has a similar flight profile to what the 

designs were made for as well as the Concorde has publicly available data on L/D ratios that a lot of aircraft do not. 

     Comparing the two AI generated designs shows that the GM performed better than the DM in every simulation. 

This is likely due to the GM being closer in design to the Concorde, so the GM was better suited to the flight profile 

of the Concorde than the DM. However, the design being better in every simulation could also mean that the GM is a 

better design regardless of flight conditions. The GM being a better design is likely due to the design and placement 

of the vertical and horizontal stabilizers. The GM has double wedge airfoils for both the vertical and horizontal 

stabilizers, and the double wedge airfoil is an efficient shape for supersonic flight. The DM had NACA 65 series 

airfoil which is good for supersonic conditions, but the horizontal stabilizers had 5 degrees of dihedral tilt. The dihedral 
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tilt along with the raised position of the horizontal stabilizer that was forced by the short fuselage and long root chord 

of the wing likely caused an increase in drag from the stabilizers in the DM that was not present in the GM.  

     Based on the simulations at level cruise conditions, the generic prompt plane is a better design than the detailed 

prompt plane. The L/D of 3.8783 provided by the DM is worse than most aircraft regardless of their use, and it is 

about half of what the Concorde is reported as having at the same conditions. However, this one simulation alone does 

not determine that a design is not viable, especially because of the nature of cruising flight, a design can be viable 

with a low L/D. After the Mach 2 simulation, the GM looks promising because the L/D of 6.4744 is only slightly less 

than the report value of 7 for the Concorde at the same conditions. Based on the cruise condition simulations, the GM 

appears to be viable while the DM is borderline if it has good enough aerodynamic performance. 

     The values from the Mach sweep help provide another angle to determine aerodynamic viability because the 

performance of an aircraft during climb is more important than cruise for most aircraft. Similar to the cruise conditions 

simulations, the AI generated designs performed worse than the Concorde over the Mach sweep. However, the L/D 

value for the Concorde over the Mach sweep is L/D max, which means that it might not have occurred at the AoA of 

7 degrees that the GM and DM simulations used. These L/D max values for the Concorde were used for comparison 

even though it is not a direct comparison because it still provides a real baseline value. Fig 2 shows that neither design 

performed better than the L/D max of the Concorde over the entire Mach sweep. Over Mach 1.25, none of the 

differences between the L/D of the GM or DM and the Concorde are over 12 percent. This is close enough to feel 

confident that the designs are aerodynamically viable. The simulations did not analyze takeoff and landing conditions, 

but the aerodynamic performance in the other flight conditions give confidence that both designs will perform well 

throughout the flight regime, further research and analysis is needed in order to confirm however. Also, since a lot of 

supersonic designs rely more on propulsion to generate lift at takeoff since the wings are built for the high-top speeds 

seen by these aircraft, the GM and DM can be viable designs even with potential lower L/D at takeoff and landing 

conditions. 

VI. Conclusion 

     As industry 4.0 becomes more prevalent in every field, the incorporation of AI into the design process will be seen 

in many industries, including aerospace. However, there are doubts over whether LLMs are able to produce quality 

results in more complicated fields. This paper explored the application of LLMs and AI in the preliminary design of 

supersonic aircraft, focusing on their ability to analyze and optimize aerodynamic properties. By utilizing AI-driven 

tools and computational fluid dynamics (CFD) simulations within CAE software such as ANSYS Fluent, we 

conducted analysis to evaluate the performance of AI-generated designs compared to traditional, experimentally 

validated supersonic aircraft. The results further demonstrate that various parameters affect the performance. For the 

two designs considered through LLM prompts, it was found that the two designs did not produce aerodynamic 

characteristics that were on the same level as the Concorde, but the designs were still reasonable to be deemed 

aerodynamically viable designs for an actual aircraft. Further analysis is needed to see if AI can produce every aspect 

of a supersonic aircraft design, including propulsion and structures, and to see if newer models of LLMs can produce 

better designs as well as performance. 
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