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As autonomous landing rockets become more common in industry, Florida Rocket Lab needs
a testbed to develop the guidance, navigation, and controls for their propulsive landing vehicle
Hopper. A mono-propelled vertical take-off and landing drone Skipper is an optimal choice as it
is relatively safe, cost-effective, and mirrors the dynamics of a rocket closely. This paper first
covers the derivation of the equations of motion for a mono-propelled VTOL drone. Using
these equations, a linear state space can be constructed and controlled using a linear-quadratic
regulator. Due to the highly nonlinear nature of the system, a gain-scheduling program is then
implemented based on the error between the linear and nonlinear states. The combined control
system is then implemented in MATLAB/Simulink and used to control the drone in a variety
of environments. This paper aims to guide other student teams in the development of similar
projects.

I. Introduction
Autonomous landing rockets are becoming more common in current industry, such as Blue Origin’s New Shepard

and SpaceX’s Falcon 9 and Falcon Heavy rockets. With this increase in autonomous vertical landing vehicles in industry,
it would benefit students to develop an understanding of the dynamics and guidance, navigation, and controls (GNC) of a
vertical take-off and landing (VTOL) vehicle. Hopper is a student-developed liquid rocketry project founded by Florida
Rocket Lab at the University of Florida. To develop and test the GNC of this propulsive landing vehicle, the choice of a
mono-propelled VTOL drone is an appropriate pilot project. The dynamics of the drone, Skipper, closely mirrors that of
a rocket while also being both economically viable and safe for a student organization. The Skipper project aims to give
undergraduate students experience with GNC, in addition to serving as a testbed for Hopper. This paper outlines the
dynamics of the system, the construction and control of a linear state space with the use of a linear-quadratic regulator
(LQR), and the implementation of these into simulations with Simulink. These findings can contribute to improving
the controls of autonomous landing systems, especially those with dynamics similar to that of Skipper. Moreover, the
findings can offer a framework and entry point for other student organizations with similar projects.

II. System Dynamics
Skipper is a mono-propelled VTOL drone with its propulsive capability, two contra-rotating propellers, located at

the bottom of the vehicle. It is modeled as a rigid cylinder of diameter, 𝐷, height, 𝐻, and mass 𝑀 in three-dimensional
Euclidean space, E3 with 6 degrees-of-freedom (DOF) [1, 2] — three translational and three rotational. To ensure full
controllability, there are three methods of control the drone may use:

1) Thrust generated by throttling the propellers.
2) A 2-DOF gimbal, allowing for thrust vectoring.
3) Torque about the longitudinal axis generated from the relative angular rates of the two contra-rotating propellers.

Taken together, these controls allow control effort to be exerted along all six of Skipper’s DOF.
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A. Reference Frames
Consider an inertial frame, I, fixed to the Earth with an associated right-handed basis {x̂𝑒, ŷ𝑒, ẑ𝑒} ∈ I. In contrast

to convention, we take x̂𝑒 to point straight up, normal to the ŷ𝑒ẑ𝑒-plane corresponding to the ground. ẑ𝑒 is not chosen to
point straight down because doing so would induce gimbal lock in the starting configuration. Next, let U be another
reference frame fixed to Skipper with corresponding basis {x̂𝑏, ŷ𝑏, ẑ𝑏} ∈ U. Assume that the two frames are aligned by
default, and that as U rotates with respect to I this rotation may be described using a 3-2-1 intrinsic Tait-Bryan angle
sequence, {𝜓, 𝜃, 𝜙}, referred to as yaw, pitch, and roll respectively. This series of rotations is given by the following
three direction-cosine matrices (DCM),

C3 (𝜓) =


cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1

 , C2 (𝜃) =

cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

 , C1 (𝜙) =

1 0 0
0 cos 𝜙 sin 𝜙
0 − sin 𝜙 cos 𝜙

 . (1)

The combined transformation from I to U is then given by,

CU
I (𝜓, 𝜃, 𝜙) = C1 (𝜙)C2 (𝜃)C3 (𝜓) =


1 0 0
0 cos 𝜙 sin 𝜙
0 − sin 𝜙 cos 𝜙



cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃




cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1

 , (2)

=


cos𝜓 cos 𝜃 cos 𝜃 sin𝜓 − sin 𝜃

cos𝜓 sin 𝜙 sin 𝜃 − cos 𝜙 sin𝜓 cos 𝜙 cos𝜓 + sin 𝜙 sin𝜓 sin 𝜃 cos 𝜃 sin 𝜙
sin 𝜙 sin𝜓 + cos 𝜙 cos𝜓 sin 𝜃 cos 𝜙 sin𝜓 sin 𝜃 − cos𝜓 sin 𝜙 cos 𝜙 cos 𝜃

 . (3)

To make simply later derivations, we also introduce a frame fixed to the gimbal, G, with a corresponding basis
{x̂𝑔, ŷ𝑔, ẑ𝑔} ∈ G. As previously stated, the gimbal has 2-DOF and in this case G rotates with respect to U through a
2-3 sequence represented by the angles, {𝜉, 𝜁}. Using Eq. (1) as a basis, we may form the U to G DCM,

CG
U (𝜉, 𝜁) = C3 (𝜁)C2 (𝜉) =


cos 𝜁 sin 𝜁 0
− sin 𝜁 cos 𝜁 0

0 0 1



cos 𝜉 0 − sin 𝜉

0 1 0
sin 𝜉 0 cos 𝜉

 . (4)

To utilize a DCM, consider an arbitrary vector, v, defined in an arbitrary frame, A. We may denote this as Av. Now
consider another frame, B, along with a DCM, CB

A , which converts between the two frames. To redefine Av in B we
use the the relation,

Bv = CB
A

Av . (5)

Additionally all DCMs are orthogonal, meaning they satisfy the following property:

CC−1 = CC⊺ = I , (6)

where I is the identity matrix; therefore, to convert Bv back to A we may use Eq. (6) to write

Av = (CB
A)⊺ Bv = CA

B
Bv . (7)

B. Kinematics
Let r represent the displacement of Skipper’s center of gravity in E3 from which it lifts off, 𝑂, fixed in I. We may

write r as
Ir = 𝑥x̂𝑒 + 𝑦ŷ𝑒 + 𝑧ẑ𝑒 , (8)

where (𝑥, 𝑦, 𝑧) represent the distance traveled from 𝑂 along their respective basis vectors. Differentiating with respect
to time, 𝑡, in I, we obtain

Iv = ¤𝑥x̂𝑒 + ¤𝑦ŷ𝑒 + ¤𝑧ẑ𝑒 . (9)

However, it often useful to instead observe Skipper’s motion from U, and as such we may write Eq (9) as

Uv = 𝑢x̂𝑏 + 𝑣ŷ𝑏 + 𝑤ẑ𝑏 , (10)
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where (𝑢, 𝑣, 𝑤) represent the components of v along their accompanying basis vector as discussed in [3]. To differentiate
Eq (10), we make use of the transport theorem—which facilitates a time derivative in a non-inertial frame in terms of an
inertial frame—so that we may use the Newton-Euler equations of motion, which are only applicable in inertial frames.

B 𝑑

𝑑𝑡

Av =
A 𝑑

𝑑𝑡

Av U + 𝝎 ×A v =A ¤v + 𝝎 ×A v . (11)

Using Eq. (11) on Eq. (10) we may write

Ia = U ¤v +U𝝎 ×U v (12)
= ¤𝑢x̂𝑏 + ¤𝑣ŷ𝑏 + ¤𝑤ẑ𝑏 + (𝑝x̂𝑏 + 𝑞ŷ𝑏 + 𝑟 ẑ𝑏) × (𝑢x̂𝑏 + 𝑣ŷ𝑏 + 𝑤ẑ𝑏) (13)

=


¤𝑢
¤𝑣
¤𝑤

 +


0 −𝑟 𝑞

𝑟 0 −𝑝
−𝑞 𝑝 0



𝑢

𝑣

𝑤

 =

¤𝑢
¤𝑣
¤𝑤

 +

𝑞𝑤 − 𝑟𝑣

𝑟𝑢 − 𝑝𝑤

𝑝𝑣 − 𝑞𝑢

 , (14)

where U𝜔 is the angular velocity of U with respect to I and (𝑝, 𝑞, 𝑟) are its components written in {x̂𝑏, ŷ𝑏, ẑ𝑏} [1, 3].
Note that in Eq. (14) we make use of the fact that

(U𝝎×) =U𝝎× =


0 −𝑟 𝑞

𝑟 0 −𝑝
−𝑞 𝑝 0

 , (15)

where (·)× represents the skew operator [1].
Because Skipper is a 6-DOF system, we need angular kinematics as well as the linear kinematics to fully define

Skipper’s equations of motion (EOM). For angular kinematics, we define the angular momentum h about Skipper’s
center of mass (CM) to be

Uh = J U𝝎 , (16)

where J is Skipper’s corresponding moment of inertia tensor. By defining J in U, the principal axes of a cylinder
correspond to {x̂𝑏, ŷ𝑏, ẑ𝑏}, meaning

𝐽𝑥𝑦 = 𝐽𝑦𝑥 = 𝐽𝑥𝑧 = 𝐽𝑧𝑥 = 𝐽𝑦𝑧 = 𝐽𝑧𝑦 = 0. (17)

and hence J reduces to
J = 𝐽𝑥𝑥 x̂𝑏 + 𝐽𝑦𝑦 ŷ𝑏 + 𝐽𝑧𝑧 ẑ𝑏 . (18)

In matrix form, Eq. (16) may be rewritten as,

Uh =


𝐽𝑥𝑥 0 0
0 𝐽𝑦𝑦 0
0 0 𝐽𝑧𝑧



𝑝

𝑞

𝑟

 =

𝐽𝑥𝑥 𝑝

𝐽𝑦𝑦𝑞

𝐽𝑧𝑧𝑟

 . (19)

Differentiating Eq. (19) in I, and again applying Eq. (11), we find that,

I 𝑑

𝑑𝑡

Uh = U ¤h +U𝝎 ×U h (20)

=


𝐽𝑥𝑥 ¤𝑝
𝐽𝑦𝑦 ¤𝑞
𝐽𝑧𝑧 ¤𝑟

 +


0 −𝑟 𝑞

𝑟 0 −𝑝
−𝑞 𝑝 0



𝐽𝑥𝑥 𝑝

𝐽𝑦𝑦𝑞

𝐽𝑧𝑧𝑟

 =

𝐽𝑥𝑥 ¤𝑝 + 𝑞𝑟 (𝐽𝑧𝑧 − 𝐽𝑦𝑦)
𝐽𝑦𝑦 ¤𝑞 + 𝑝𝑟 (𝐽𝑥𝑥 − 𝐽𝑧𝑧)
𝐽𝑧𝑧 ¤𝑟 + 𝑝𝑞(𝐽𝑦𝑦 − 𝐽𝑥𝑥)

 . (21)

C. Kinetics
With the kinematics found via Eq. (14) and Eq. (21) we can now compute the EOM. Because Skipper is a 6-DOF

rigid body, we must use Newton-Euler’s laws for rigid bodies. To begin, consider the following actions, consisting of
forces and pure torques, acting on Skipper:
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1) Weight, IW = −𝑚𝑔x̂𝑒, where 𝑚 is Skipper’s mass and 𝑔 the acceleration due to gravity.
2) Thrust, GT = 𝑇 x̂𝑔, where 𝑇 = | |T| |.
3) Reaction torque, approximated about the body, U𝝉𝑟 = 𝜏𝑟 x̂𝑢, where 𝜏𝑟 = | |𝝉𝑟 | |.

Newton-Euler’s first equation is, ∑︁
𝑖

F𝑖 = 𝑚a , (22)

where {F𝑖} are the forces acting on the body and a is the next acceleration. Using Eq. (14) in conjunction with the
forces acting on the system, Eq. (22) expands to:

T + W = 𝑚 Ua . (23)

However, all three vector quantities are in different frames and as such we make use of Eq. (3) and Eq. (4) in conjunction
with Eq. (6) to convert all quantities to U to obtain,

CU
G


𝑇

0
0

 + CU
I


−𝑚𝑔

0
0

 = 𝑚
©­­«

¤𝑢
¤𝑣
¤𝑤

 +

𝑞𝑤 − 𝑟𝑣

𝑟𝑢 − 𝑝𝑤

𝑝𝑣 − 𝑞𝑢


ª®®¬ . (24)

Moving onto Newton-Euler’s second law, it is given by,∑︁
𝑖

(r𝑖 × F𝑖) +
∑︁
𝑖

𝝉𝑖 =
𝑑

𝑑𝑡
h , (25)

where r𝑖 is the lever arm (from the CM of the body) of the 𝑖-th force and {𝝉𝑖} is are the pure torques acting on the body.
Using Eq. (21) in conjunction with the forces and pure torques acting on the system, Eq. (25) becomes,

𝝆 × T + 𝝉𝑟 =
I 𝑑

𝑑𝑡

Uh . (26)

𝝆 = −𝜌x̂𝑏 is the lever arm from the CM to the center of thrust. Again converting all the frames to, U, the above can be
rewritten as, 

−𝜌
0
0

 × CU
G


𝑇

0
0

 +

𝜏𝑟

0
0

 =

𝐽𝑥𝑥 ¤𝑝 + 𝑞𝑟 (𝐽𝑧𝑧 − 𝐽𝑦𝑦)
𝐽𝑦𝑦 ¤𝑞 + 𝑝𝑟 (𝐽𝑥𝑥 − 𝐽𝑧𝑧)
𝐽𝑧𝑧 ¤𝑟 + 𝑝𝑞(𝐽𝑦𝑦 − 𝐽𝑥𝑥)

 . (27)

Combined, Eq. (24) and Eq. (27) form a system of 6 first-order ordinary differential equations (ODEs) which may be
solved for ( ¤𝑢, ¤𝑣, ¤𝑤, ¤𝑝, ¤𝑞, ¤𝑟) to obtain,

¤𝑢 = (𝑇 cos 𝜉 cos 𝜁 − 𝑚𝑞𝑤 + 𝑚𝑟𝑣 − 𝑚𝑔 cos𝜓 cos 𝜃/𝑚) , (28)
¤𝑣 = (𝑇 sin 𝜁 + 𝑚𝑝𝑤 − 𝑚𝑟𝑢 + 𝑚𝑔 cos 𝜙 sin𝜓 − 𝑚𝑔 cos𝜓 sin 𝜙 sin 𝜃)/𝑀 , (29)
¤𝑤 = −(𝑇 cos 𝜁 sin 𝜉 + 𝑚𝑝𝑣 − 𝑚𝑞𝑢 + 𝑚𝑔 sin 𝜙 sin𝜓 + 𝑚𝑔 cos 𝜙 cos𝜓 sin 𝜃)/𝑚 , (30)
¤𝑝 = (𝜏𝑟 + 𝐽𝑦𝑦𝑞𝑟 − 𝐽𝑧𝑧𝑞𝑟)/𝐽𝑥𝑥 , (31)
¤𝑞 = −(𝐽𝑥𝑥 𝑝𝑟 − 𝐽𝑧𝑧 𝑝𝑟 + 𝑇𝜌 cos 𝜁 sin 𝜉)/𝐽𝑦𝑦 , (32)
¤𝑟 = −(𝑇𝜌 sin 𝜁 − 𝐽𝑥𝑥 𝑝𝑞 + 𝐽𝑦𝑦 𝑝𝑞)/𝐽𝑧𝑧 . (33)

Eqs. (28 - 33) form a system of 6 equations and 6 unknowns, where (𝑇, 𝜏𝑟 , 𝜉, 𝜁) are inputs to the system assumed to be
known.

D. Position and Attitude Representation
To fully model the flight dynamics of Skipper it is necessary to introduce representations for the components of

the position, (𝑥, 𝑦, 𝑧), in {x̂𝑒, ŷ𝑒, ẑ𝑒} along with attitude, (𝜙, 𝜃, 𝜓). The former can simply be found by introducing a
relation between Iv and Uv via Eq. (3) as,

Iv = (CI
U) Iv , (34)
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or alternatively, 
¤𝑥
¤𝑦
¤𝑧

 = CI
U


¤𝑢
¤𝑣
¤𝑤

 , (35)

which may be solved for ( ¤𝑥, ¤𝑦, ¤𝑧) to be,

¤𝑥 = 𝑤 sin 𝜙 sin𝜓 + cos 𝜙 cos𝜓 sin 𝜃 − 𝑣 cos 𝜙 sin𝜓 − cos𝜓 sin 𝜙 sin 𝜃 + 𝑢 cos𝜓 cos 𝜃 , (36)
¤𝑦 = 𝑣 cos 𝜙 cos𝜓 + sin 𝜙 sin𝜓 sin 𝜃 − 𝑤 cos𝜓 sin 𝜙 − cos 𝜙 sin𝜓 sin 𝜃 + 𝑢 cos 𝜃 sin𝜓 , (37)
¤𝑧 = 𝑤 cos 𝜙 cos 𝜃 − 𝑢 sin 𝜃 + 𝑣 cos 𝜃 sin 𝜙 . (38)

A similar relation may be developed for relating ( ¤𝜙, ¤𝜃, ¤𝜓) to (𝑝, 𝑞, 𝑟), although because of the intrinsic nature of
the 3-2-1 Tait-Bryant rotation sequence each of ( ¤𝜙, ¤𝜃, ¤𝜓) are in different intermediate frames. Thus, we may solve for
(𝑝, 𝑞, 𝑟) via the following [3]: 

𝑝

𝑞

𝑟

 = C1 (𝜙)
©­­«C2 (𝜃)

©­­«C3 (𝜓)

0
0
¤𝜓

 +

0
¤𝜃
0


ª®®¬ +


0
0
¤𝜙


ª®®¬ . (39)

We can now convert from ( ¤𝜙, ¤𝜃, ¤𝜓) to (𝑝, 𝑞, 𝑟), so to go the other direction, we can take the inverse and simplify. We
end up with the following equations:

¤𝜙 = 𝑝 + 𝑟 cos 𝜙 tan 𝜃 + 𝑞 sin 𝜙 tan 𝜃 , (40)
¤𝜃 = 𝑞 cos 𝜙 − 𝑟 sin 𝜙 , (41)
¤𝜓 = 𝑟 cos 𝜙 sec 𝜃 + 𝑞 sin 𝜙 sec 𝜃 . (42)

Eqs. (36 - 38) and Eqs. (40 - 42), along with Eqs. (28 - 33), form a full set of 12 ordinary differential equations, which
form the basis for our state space.

III. State Space Model and LQR Control

A. Constructing a State Space
As described previously, x, our state space, takes the form of a column vector,

x =

[
𝑥 𝑦 𝑧 𝑢 𝑣 𝑤 𝜙 𝜃 𝜓 𝑝 𝑞 𝑟

]⊺
, (43)

In addition, let u represent the control inputs to our system, another column vector of the form,

u =

[
𝑇 𝜏𝑟 𝜉 𝜁

]⊺
. (44)

Taken together, x and u may be used to develop a system of nonlinear equations,

¤x = f (x, u) , (45)

equivalent to Eqs. (36 - 38), Eqs. (40 - 42), and Eqs. (28 - 33). However, to implement a LQR controller it is necessary
to linearize Eq. (45) such that it may be written as,

¤x = Ax + Bu , (46)

where A and B represent the constant coefficients of x and u in the linearized system and are known as the state and
input matrices respectively. Eq. (46) is known as the state space representation of Eq. (45) and may be created using a
first-order Taylor series approximation of Eq. (45),

f (x, u) ≈ f (x0, u0) +
𝜕f
𝜕x

����
(x0 ,u0 )

(x − x0) +
𝜕f
𝜕u

����
(x0 ,u0 )

(u − u0) , (47)
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about the base point, (x0, u0). Comparing Eq. (47) to Eq. (46) it may be seen that,

A =
𝜕f
𝜕x

����
(x0 ,u0 )

(x) ; B =
𝜕f
𝜕u

����
(x0 ,u0 )

(u) . (48)

In addition, Eq. (47) has a set of constant terms,

d = f (x0, u0) −
𝜕f
𝜕x

����
(x0 ,u0 )

(x0) −
𝜕f
𝜕u

����
(x0 ,u0 )

(u0) , (49)

which is considered to be a disturbance not found in Eq. (46). d represents a state-independent constant offset or an
inhomogeneity and accordingly alters Eq. (46) to the form,

¤x = Ax + Bu + d . (50)

There are a varie ty of methods to resolve this affine nonlinearity, but for our purposes, we chose to counteract it through
the addition of a feed-forward term to u—the rationale being that a constant upwards thrust would best ensure stability
against the constant downwards pull of gravity.

In a conventional state space, the system’s equilibrium is defined to be the conditions under which,

¤x = 0 . (51)

In a traditional homogeneous state space, that would imply x and u are both 0. However, the presence of d prevents
Eq. (50) from reaching equilibrium, thus necessitating the aforementioned feed-forward control.

To introduce said feed-forward control, u𝑒𝑞 , let

𝛿u = u − u𝑒𝑞 =⇒ u = 𝛿u + u𝑒𝑞 . (52)

be a change of variables given by Lloyd [4] such that,

¤x = Ax + Bu + d = Ax + B(𝛿u + u𝑒𝑞) + d . (53)

By taking u𝑒𝑞 to be constant along an episode of the gain scheduler and applying Eq. (51), the above reduces to,

Bu𝑒𝑞 = −d . (54)

Eq. (54) is underdetermined because 𝛿u ∈ R4 and d ∈ R12, so it is impossible to solve analytically. To resolve this
problem, we turn to the least-squares solution of an arbitrary affine system. Given a system,

Ax = b , (55)

where x ∈ R𝑁 is an unknown column vector and A ∈ R𝑁×𝑁 and b ∈ R𝑁 have only constant components, its
least-squares solution, x∗, has the form

r = ∥Ax∗ − b∥ ≤ ∥Ax − b∥ , (56)
where ∥r∥ is the minimal residual of the system [5]. It can be shown that the Moore-Penrose pseudoinverse, A+ satisfies
the property,

x∗ = A+d , (57)
and thus can be used to directly compute the least-squares solution to an overdetermined system. However, it is important
to note that the pseudoinverse does not always satisfy the definition of the traditional matrix inverse.

AA+ ≠ I ∀A . (58)

Equipped with the Moore-Penrose inverse, we can return to Eq. (54), and by applying Eq. (57), we obtain

u𝑒𝑞 = −B+d . (59)

Using Eq. (59), Eq. (50) may be rewritten as

¤x = Ax + B(𝛿u − B+d) + d . (60)

It has been experimentally shown that for Skipper the components of r are small enough that

BB+d ≈ d, (61)

Thus, we have, in effect, eliminated the affine nonlinearity from Eq. (46) ∗.
∗When trimming for hovering the high degree of sparsity in B and d make this relation exact.
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B. Negative Feedback and LQR Control
To introduce negative feedback to our system we can define,

𝛿u = −Kx , (62)

where K is known as the gain matrix. The full control law for Skipper, including both feed-forward and negative
feedback, is thus given by,

u = −Kx − B+d , (63)

and may be introduced into Eq. (50) to yield,
¤x = Ax − BKx . (64)

K may now be computed using LQR control. To begin, let 𝐽, be a cost-functional for an arbitrary system of the form,

𝐽 =

∫ ∞

0
x⊺Qx + 𝛿u⊺R𝛿u 𝑑𝑡 , (65)

where Q and R are diagonal weight matrices applied to x and u respectively. We wish to find u𝑒𝑞 (and thus K) which
minimizes 𝐽. This will occur when 𝐽 is brought to zero as quickly as possible by driving x and 𝛿u to zero because the
quadratic form of 𝐽 eliminates any notion of negative cost and is strictly convex. More precisely, we wish to find an
optimal 𝛿u, 𝛿u∗, such that,

𝛿u∗ = arg min
𝛿u

𝐽; 𝛿u = −Kx . (66)

It has been found that for a cost-functional of LQR form there exists an exact solution known to Eq. (66) known as the
Continuous Algebraic Ricatti Equation (CARE) [6],

0 = 𝑺𝑨 + 𝑨⊺𝑺 − 𝑺𝑩𝑹−1𝑩
⊺
𝑺 + 𝑸 . (67)

S refers to the solution of the CARE, and can be used to directly compute K using,

K = R−1B⊺S . (68)

For our purposes, the MATLAB function icare() was used to compute K numerically, because of its ability to solve
CARE when A is singular, an issue which occurs when trimming for hovering or near-hovering.

C. Automatic Gain Scheduling
Since the dynamics of the system are highly non-linear, the linearized system given by Eq. (46) and corresponding

control law given in Eq. (63) rapidly become inaccurate as time progresses. To counteract this, on each guidance loop,
the controller computes both the linear and nonlinear predictions for x and compares them. If |x𝑙𝑖𝑛𝑒𝑎𝑟 − x𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 | > 𝑒,
where 𝑒 is the norm of the component-wise tolerance for state deviation from the linear approximation, x𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 and
the current u are chosen to be the new base-point about which the system is linearized. This, in turn, leads to new values
for A, B, K, and d, which are fed back into the controller. Because this process is performed automatically it avoids the
need for the lookup tables and pre-selected base points used in conventional pre-flight gain scheduling. It is important
to note that even though we have the ability to compute an approximation for x𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 , we still must compute the
linear approximation because we cannot get K, an integral part of our control scheme, otherwise. A Simulink diagram
for Skipper’s controller, including the gain scheduling, is shown in Figure 1.

IV. Results
For testing purposes, the following parameters were used:

𝑚 = 0.01539 slug ,

𝑔 = 32.2 ft/s2 ,

𝐻 = 0.458 ft ,
𝑅 = 1.500 ft ,
𝜌 = 0.750 ft ,
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Fig. 1 Simulink model used to control and simulate the dynamics of Skipper.
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where 𝐻 and 𝑅 represent the Skipper’s height and radius respectively. These were used to approximate 𝐽𝑥𝑥 , 𝐽𝑦𝑦 , and
𝐽𝑧𝑧 using the following formulas for the rotational inertia of a cylinder in a body-axis-fixed frame,

𝐽𝑥𝑥 =
𝑚𝑅2

2
, (69)

𝐽𝑦𝑦 =
𝑚(3𝑅2 + 𝐻2)

12
= 𝐽𝑧𝑧 . (70)

In addition, a saturation block was added in cascade with the controller to restrict the operating range of the control
inputs to:

0 ≤ 𝑇 ≤ 2.2 lbf ,

−1.157 ≤ 𝜏𝑟 ≤ 1.157 lbf·ft ,
−10 ≤ 𝜉 ≤ 10 deg ,

−10 ≤ 𝜁 ≤ 10 deg .

In addition, the following sets of LQR weights were used,

Q = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10) (71)
R = diag(1, 1, 10, 10) . (72)

The robustness of the control scheme was tested by testing Skipper’s ability to remain hovering at its initial position
while under a constant y-horizontal wind at speeds ranging from 0 to 5 ft/s in increments of 0.1 m/s. The results of this
analysis are shown in and Figure 3.

(a) (b)

Fig. 2 Vertical (a) and y-horizontal (b) position under wind.

Skipper was able to maintain its stability while under the full range of wind speeds but not its equilibrium. As seen
in Figure 2 at steady state there is a constant offset, likely due to the remaining affinity of the system after linearization
as demonstrated by Eq. (56). The control response can be seen in Figure 3, and for the most part rapidly drives the
system to its steady-state value. In addition, the feed-forward control term works as intended and the steady-state thrust
counteracts Skipper’s weight as a result.

Then, Skipper was tasked with moving to a position † of (𝑥, 𝑦, 𝑧) = (5, 5, 5) ft and then hovering upright at that spot
indefinitely as seen in Figure 4. The controller makes use of its thrust vectoring ability to fly at an angle, also shown in
Figure 4, although it struggles to maintain that angle over an extended period of time. This leads to gyroscopic behavior
in both the angular rates and gimbal angle positions, seen in Figure 5 and Figure 6 respectively.

†This can be accomplished through a change of variables similar to that of Eq. (52) via 𝛿x = x − x𝑟𝑒 𝑓 , where x𝑟𝑒 𝑓 is the target state [4].
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(a) (b)

Fig. 3 Thrust (a) and lower gimbal angle (b) while under wind.

(a) (b)

Fig. 4 Position (a) and attitude (b) while tracking a reference.

(a) (b)

Fig. 5 Velocity (a) and angular rates (b) while tracking a reference.
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(a) (b)

Fig. 6 Thrust (a) and gimbal angles (b) while tracking a reference.

V. Conclusion
In summary, we first derived the equations of motion governing the dynamics of a mono-propelled VTOL drone

known as Skipper. We then discussed the linearization of this system and state-space representation, followed by the
implementation of a LQR controller. We then implemented a Simulink model with reasonable modeling parameters for
the control scheme. Finally, the ability of Skipper to maintain stability under a constant crosswind or while reference
tracking was discussed.

Further research would likely focus on eliminating steady-state error via the implementation of a linear-quadratic-
integrator controller. This would also remove the need for least-squares affinity reduction. A Kalman filter could also be
added to improve stability in the face of noise. In addition, an optimal guidance law could be implemented to allow
for Skipper to track an arbitrary reference otherwise far outside its immediate linear operating range, also improving
its wind compensation. More rigorous methods of gain tuning, such as a machine learning approach, could also be
considered. Finally, the control scheme detailed in this paper could be deployed on a real-world version of Skipper to
demonstrate its practical efficacy.
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